Ch 18 - Thermodynamics and Equilibrium

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Internal Energy (U)

- Internal energy is the sum of the kinetic and potential energies of the individual molecules.
- Both internal energy (U) and enthalpy (H) are state functions.

That is, they depend only on the present state, not on their history.

- A state function is completely determined by other state functions.

For example, U is determined by T and P .
$1^{\text {st }}$ Law of Thermodynamics

- $\Delta \mathrm{U}$ can be used to describe thermodynamic changes to a system due to a reaction.
$\Delta \mathbf{U}=\mathbf{U}_{\mathbf{f}}-\mathbf{U}_{\mathbf{i}}=\mathbf{q}+\mathbf{w} \quad$ where q is heat and w is work
- q is positive when heat is added to system, negative when heat is released
- $\quad \mathrm{w}$ is positive when work is done to system, negative when work is done by the system
- For constant force, work is force times distance. $\quad w=F(\Delta x)$
- In a gravitational field, $\mathrm{F}=\mathrm{mg}$ where m is mass and g is the gravitational constant, $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Work done by gravity is found by $\mathrm{w}=\mathrm{F}(\Delta \mathrm{h})=\operatorname{mg}(\Delta \mathrm{h})$, where $(\Delta \mathrm{h})$ is change in height.
- For an expanding gas that is doing work by making a gas piston move upwards: $w=-F(\Delta h)$
- Volume of a cylinder is area times height. $\quad \mathrm{V}=\mathrm{A} \times \mathrm{h} \quad \Delta \mathrm{V}=\mathrm{A}(\Delta \mathrm{h})$

So, work is a function of $\Delta \mathrm{V}$ for the gas.

$$
\mathrm{w}=-\mathrm{F}(\Delta \mathrm{~h})=-\mathrm{F}\left(\frac{\Delta \mathrm{~V}}{\mathrm{~A}}\right)=-\left(\frac{\mathrm{F}}{\mathrm{~A}}\right)(\Delta \mathrm{V})
$$

- Pressure is force over area: $\mathrm{P}=\mathrm{F} / \mathrm{A}$. This gives us $\mathrm{w}=-\mathrm{P}(\Delta \mathrm{V})$ for an expanding gas piston.
- Suppose a 1.0 kg weight pushes a gas piston downwards by 1.5 m , and 2.0 J are released as heat due to friction during the process. Find the q, w, and U for the gas piston. $\mathrm{w}=-\mathrm{mg}(\Delta \mathrm{h})=-(1.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-1.5 \mathrm{~m})=+14.7 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=+14.7 \mathrm{~J}$ (Gas absorbs E) $\mathrm{q}=-2.0 \mathrm{~J}($ Gas releases E$) \quad \Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=(-2.0)+(+14.7)=+12.7 \mathrm{~J}$

Enthalpy

$-\quad \mathrm{H}=\mathrm{U}+\mathrm{PV} \quad$ and $\quad \Delta \mathrm{H}=\mathrm{H}_{\text {final }}-\mathrm{H}_{\text {initial }}=\Delta \mathrm{U}+\Delta(\mathrm{PV})$

- If pressure is constant, then $\Delta \mathrm{P}=0$. This gives us $\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P}(\Delta \mathrm{V})$.
$-\quad \Delta \mathrm{U}=\mathrm{q}-\mathrm{P}(\Delta \mathrm{V})$ can be substituted into the equation.
The result is: $\quad \Delta \mathrm{H}=\mathrm{q}-\mathrm{P}(\Delta \mathrm{V})+\mathrm{P}(\Delta \mathrm{V})=\mathrm{q}_{\mathrm{P}}$
So, the change in enthalpy is equal to the heat of reaction at constant pressure.
- See Appendix G or here for standard enthalpies of formation ($\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$) for chemical substances.
- Standard enthalpy of reaction $\left(\Delta \mathrm{H}^{\circ}\right)$ is at 1 atm and 298 K .

It can be found by the difference between enthalpies of formation for products and reactants.
$-\Delta \mathbf{H}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{p r o d})-\sum \mathbf{m} \Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{0}}$ (react) where n and m are stoichiometric coefficients.

Example 18.01 Enthalpy for Decomposition of Urea into Ammonia and Carbon Dioxide
$-1\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{s})}+1 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+1 \mathrm{CO}_{2(\mathrm{~g})}$ (Except for urea, refer to Appendix G)
$-\Delta H^{0}=\left[2 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NH}_{3(\mathrm{~g})}\right)+1 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)\right]-\left[1 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{s})}\right)+1 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}\right)\right]$
$-\Delta \mathrm{H}^{\mathrm{o}}=[2 \times(-45.9)+(-393.51)]-[(-333.2)+(-285.83)]=+133.7 \mathrm{~kJ}$ per mol of urea

Entropy

- Entropy (S) is a measure of the randomness or disorder in a system.
- It measures how dispersed the energy of a system is among the possible energy states. That is, it describes how randomly the energy is distributed.
- Randomized energy is disordered and is not usable to perform work (w).
- Entropy is equivalent to the amount of randomized (unusable) energy per unit temperature and is measured in units of energy divided by temperature (J / K).

Entropy of a Phase Change

- Heat flow is needed for a phase change, and it involves entropy because it disperses energy.
- Heat flow randomizes energy, and entropy associated with heat flow equals q/T.
- For a phase change, or for any process that occurs only near equilibrium (Q stays near K), no other entropy is created and $\Delta \mathrm{S}=\mathrm{q} / \mathrm{T}$.
$-\Delta \mathbf{S}=\Delta \mathbf{H} / \mathbf{T}$ for a phase change (melting, freezing, etc.)
$2^{\text {nd }}$ Law of Thermodynamics
- The total combined entropy of a system and its surroundings always increases for a spontaneous process, that is (Entropy Created) >0
- A spontaneous process is one which randomizes (releases) energy and creates disorder.
- For a spontaneous process: $\Delta \mathrm{S}=$ (entropy created $)+\mathrm{q} / \mathrm{T}$. The result is that $\Delta S>q / T$ because (entropy created) >0.
- If $\Delta \mathrm{S}>\Delta \mathrm{H} / \mathrm{T}$, then $\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}<\mathbf{0}$ for a spontaneous process.
- $\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}>0$ for a nonspontaneous process
$-\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$ for an equilibrium process.
$3^{\text {rd }}$ Law of Thermodynamics
- A perfectly crystalline solid at absolute zero $(0 \mathrm{~K})$ has $\mathbf{S}=\mathbf{0}$. That is, it has no disorder.
- Standard Entropy (S^{0}) for an atom, molecule, or ion is measured at 1 atm and 298 K .
- See Appendix G or here for standard entropy values (S^{o}) of chemical substances.
- There is no " Δ " or " f " in S^{0} because it is not measured the same way as $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$.
- S^{0} is actual total entropy. It is measured by integrating from
absolute zero (0 K), where $\mathrm{S}=0$, up to the final T of 298 K .
- $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ is based completely on chemical reactions at 298 K .
- Unlike $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$, values of S^{o} are nonzero and positive for elements.
- For a chemical reaction: $\boldsymbol{\Delta} \mathbf{S}^{\mathbf{0}}=\sum \mathbf{n S} \mathbf{S}^{\mathbf{0}}$ (prod) $-\sum \mathbf{m} \mathbf{S}^{\mathbf{0}}$ (react) where n and m are stoichiometric coefficients.

ΔS° (Entropy of Reaction)

- Entropy generally increases $\left(\Delta S^{0}>0\right)$ if any of the following occur:
- A molecule is broken into two or more smaller molecules. (decomposition or elimination)
- There is an increase in moles of gas.
- The phase changes from solid to liquid or gas, or from liquid to gas. (phase becomes less condensed)
- If the reverse of these conditions occur, then $\Delta S^{0}<0$.

Example 18.02 Is $\Delta \mathrm{S}^{\mathbf{o}}$ positive or negative?
a. One mol of fructose (s) ferments into two mol of ethanol (liq) and two mol of $\mathrm{CO}_{2}(\mathrm{~g})$. This a decomposition reaction. Total moles and moles of gas both increase. $\quad \Delta \mathrm{S}^{0}>0$
b. $2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}+\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{aq})}$

The total number of moles and the number of gas moles both decrease. $\quad \Delta \mathrm{S}^{0}<0$
c. $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}$

The sign cannot be determined easily because both the total moles and the gas moles do not change. However, the absolute value would be a relatively small number ($<50 \mathrm{~J} / \mathrm{K}$).

Example 18.03 Calculating ΔS^{0} for a Reaction (Except for urea, refer to Appendix G)
$-1\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{s})}+1 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+1 \mathrm{CO}_{2(\mathrm{~g})}$
$-\Delta S^{0}=\left[2 \times \mathrm{S}^{\mathrm{o}}\left(\mathrm{NH}_{3(\mathrm{~g})}\right)+1 \times \mathrm{S}^{\mathrm{o}}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)\right]-\left[1 \times \mathrm{S}^{\mathrm{o}}\left(\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{s})}\right)+1 \times \mathrm{S}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}\right)\right]$
$-\Delta S^{\mathrm{o}}=[2 \times(192.8)+(213.8)]-[(104.6)+(70.0)]=(424.8 \mathrm{~J} / \mathrm{K})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=+0.4288 \mathrm{~kJ} / \mathrm{K}$

Gibb's Free Energy (G), named after J. Willard Gibbs, is found by G $=\mathrm{H}-\mathrm{TS}$

- For a chemical reaction, the change in free energy is $\Delta \mathbf{G}^{0}=\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$.
- ΔG^{0} is the maximum energy available to do useful work ($\Delta \mathbf{G}^{\mathbf{0}}=\mathbf{w}_{\text {max }}$) because it is the difference between the total energy change and the randomized (unusable) energy change.
- The degree sign symbol $\left({ }^{\circ}\right)$ is for standard state, where $\mathrm{T}=298 \mathrm{~K}$ and each solute's concentration is $1 \mathrm{~mol} / \mathrm{L}$. For a reaction involving only liquids and/or solids, the standard total pressure is 1 atm . If gases are involved, each gas has a partial pressure equal to 1 atm .
- If a reaction is spontaneous, then $\Delta \mathbf{G}<\mathbf{0}$ (negative). $\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}<0$ for all spontaneous processes according to the $2^{\text {nd }}$ law of thermodynamics.
- $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ is the free energy of formation from elements in their reference forms at standard state.
- Note: $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}} \neq \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{TS}^{0}$ does not work for individual substances because S^{0} is not $\Delta \mathrm{S}_{\mathrm{f}}^{\mathrm{o}}$.
- For a reaction $\Delta \mathbf{G}^{\mathbf{0}}=\sum \mathbf{n} \Delta \mathbf{G}_{\mathbf{f}}^{\mathbf{0}}(\mathbf{p r o d})-\sum \mathbf{m} \Delta \mathbf{G}_{\mathbf{f}}^{\mathbf{0}}$ (react) where n and m are stoich coeffs.
- ΔG^{0} can be found from either the summation equation or the enthalpy/entropy equation.
- See Appendix G or here for standard Gibb's free energy values ($\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$) of substances.
- Convert S to kJ / K when using $\mathrm{G}=\mathrm{H}$ - TS equations, where G and H are already in kJ .

Example 18.04 Calculating $\Delta \mathrm{G}^{0}$ from $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for a reaction

- Use $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ and S^{o} values from Appendix G.
$-1 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
$-\Delta \mathrm{H}^{\mathrm{o}}=[2 \times(-45.9)]-[1 \times(0.0)+3 \times(0.0)]=-91.8 \mathrm{~kJ}$ (exothermic)
$-\Delta S^{\mathrm{o}}=[2 \times(192.8)]-[(191.6)+3 \times(130.7)]=(-198.1 \mathrm{~J} / \mathrm{K})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=-0.1981 \mathrm{~kJ} / \mathrm{K}$
$-\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}=(-91.8 \mathrm{~kJ})-(298 \mathrm{~K})(-0.1981 \mathrm{~kJ} / \mathrm{K})=-32.8 \mathrm{~kJ}$
- The reaction is spontaneous at standard state because $\Delta \mathrm{G}^{0}$ is negative.

Example 18.05 Calculating $\Delta \mathrm{G}^{\mathrm{o}}$ for a reaction by using $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ for each substance

- Use $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ values from Appendix G.
$-1 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{L})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$-\Delta \mathrm{G}^{\mathrm{o}}=[2 \times(-394.36)+3 \times(-228.59)]-[1 \times(-174.8)+3 \times(0.0)]=-1299.7 \mathrm{~kJ}$ (Spontaneous)

Criterion for Spontaneity (This is similar to interpreting Kc)

- If $\Delta \mathrm{G}^{\mathrm{o}}$ is a negative number with a large magnitude, the reaction is spontaneous as written, and the reactants transform almost completely to form products.
- If $\Delta \mathrm{G}^{\mathrm{o}}$ is a large positive number, the reaction is not spontaneous as written, and the reactants do not form significant amounts of products.
The reaction is generally spontaneous in reverse.
- If $\Delta \mathrm{G}^{0}$ has a small magnitude (pos. or neg.), the reaction gives an equilibrium mixture containing significant amounts of both reactants and products.

Thermodynamic Equilibrium Constant (K)

- Includes gas concentrations expressed as the partial pressure (P , in atm), and dissolved (aqueous) solute concentrations expressed as molarity (M).
- The expression for K can include both gas pressures and solute molarities together.
- Solids and pure liquids are still omitted from the expression.
- If a reaction includes only gases, then $K=K_{p}$.
- If a reaction includes only aqueous solutes, then $K=K_{c}, K_{a}, K_{b}, K_{s p}, K_{f}$ or K_{d}.

Example 18.07 Writing Expressions for Thermodynamic K
a. $\quad \mathrm{AgI}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{aq})}^{-1}$

$$
\mathrm{K}=\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}\right)\left[\Gamma^{-1}{ }_{(\mathrm{aq})}\right]
$$

b. $\quad \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$

$$
\mathrm{K}=\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH} 3(\mathrm{~g})}^{2}}{\mathrm{P}_{\mathrm{N} 2(\mathrm{~g})} \mathrm{P}_{\mathrm{H} 2(\mathrm{~g})}^{3}}
$$

c. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}+\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{aq})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$

$$
\mathrm{K}=\frac{\mathrm{P}_{\mathrm{CO} 2(\mathrm{~g})} \mathrm{P}_{\mathrm{NH} 3(\mathrm{~g})}^{2}}{\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{aq})}\right]}
$$

Thermodynamic Reaction Quotient (Q)

- Q has the same form as K, but uses interim concentrations: $[A]_{i}$.
$-\Delta \mathrm{G}$ at nonstandard concentrations and pressures is found by $\Delta \mathbf{G}=\Delta \mathbf{G}^{\mathbf{0}}+(\mathbf{R T}) \ln [\mathrm{Q}]$ $\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$ is the universal gas constant. The result for $\Delta \mathrm{G}$ is in Joules.

Relating $\Delta \mathrm{G}$ to Thermodynamic K

- What if $\mathrm{Q}=\mathrm{K}$?

Then, no changes in concentration are spontaneous, which means $\Delta \mathrm{G}=0$.
Implies: $\quad 0=\Delta \mathrm{G}^{\mathbf{0}}+(\mathrm{RT}) \ln [\mathrm{K}] \quad$ or $\quad \Delta \mathbf{G}^{\mathbf{0}}=-(\mathbf{R T}) \ln [\mathbf{K}]$

- Also: $\quad \mathbf{K}=\exp \left[-\frac{\Delta \mathbf{G}^{\mathbf{o}}}{\mathbf{R T}}\right]=\mathbf{e}^{\left[-\Delta \mathbf{G}^{\mathbf{0}} / \mathrm{RT}\right]}$
$-\quad \Delta \mathbf{G}=-(\mathrm{RT}) \ln [\mathrm{K}]+(\mathrm{RT}) \ln [\mathrm{Q}]=-(\mathbf{R T}) \ln \left[\frac{\mathbf{K}}{\mathbf{Q}}\right]$

Example 18.08 Find Thermodynamic K at 298 K from $\Delta \mathrm{G}^{0}$
$-\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$

- $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ were calculated in Examples 18.01 and 18.03.
$-\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}=(+133.7 \mathrm{~kJ})-(298 \mathrm{~K})(+0.4288 \mathrm{~kJ} / \mathrm{K})=+5.9 \mathrm{~kJ}$
$-\Delta \mathrm{G}^{\mathrm{o}}=(+5.9 \mathrm{~kJ})\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)=+5,900 \mathrm{~J}$
$-K=\exp \left(-\Delta \mathrm{G}^{\mathrm{o}} / \mathrm{RT}\right)=\exp \left[\frac{-(+5,900 \mathrm{~J})}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K}}\right)(298 \mathrm{~K})}\right]=\exp [-2.38]=9.26 \times 10^{-2}$

Example 18.09 Calculate $\mathrm{K}_{\text {sp }}$ from $\Delta \mathrm{G}^{0}$ for $1 \mathrm{AgCl}_{(\mathrm{s})} \rightleftharpoons 1 \mathrm{Ag}^{+1}{ }_{(\mathrm{aq})}+1 \mathrm{Cl}^{-1}{ }_{\text {(aq) }}$
$-\Delta \mathrm{G}^{\mathrm{o}}=[1 \times(77.1)+1 \times(-131.2)]-[1 \times(-109.8)]=(+55.7 \mathrm{~kJ})\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)=+55,700 \mathrm{~J}$
$-K=\exp \left(-\Delta \mathrm{G}^{0} / \mathrm{RT}\right)=\exp \left[\frac{-(+55,700 \mathrm{~J})}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K}}\right)(298 \mathrm{~K})}\right]=\exp [-22.48]=1.7 \times 10^{-10}$

- This value approximately matches the K_{sp} value in Appendix J.

Standard State Concentrations and Partial Pressures at Temperatures other than $298 \mathrm{~K}\left(\Delta \mathrm{G}_{\mathrm{T}}{ }^{0}\right)$

- If $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are approximately constant as T changes, then the equation at other temperatures simplifies to $\Delta \mathbf{G}_{\mathbf{T}}{ }^{\mathbf{0}}=\Delta \mathbf{H}^{\mathbf{0}}-\mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$.
- The spontaneity of a reaction at other temperatures can then be determined from the sign on $\Delta \mathrm{G}$, which is a function of the signs on $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$.

$\Delta \mathrm{H} \Delta \mathrm{S}$	$\Delta \mathrm{G}$	Spontaneity
$-\quad+$	Always $\Delta \mathrm{G}<0$	Reaction is spontaneous at all T's.
$+\quad-$	Always $\Delta \mathrm{G}>0$	Reaction is not spontaneous at any T.
$+\quad+$	$\Delta \mathrm{G}<0$ if $\mathrm{T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$	Reaction is spontaneous only at T's above that value.
$-\quad-$	$\Delta \mathrm{G}<0$ if $\mathrm{T}<\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$	Reaction is spontaneous only at T's below that value.

Example 18.10 Find $\Delta \mathrm{G}_{\mathrm{T}}{ }^{\mathrm{o}}$ and K at $1227^{\circ} \mathrm{C}$ for $\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$-\Delta \mathrm{H}^{\mathrm{o}}=+191.6 \mathrm{~kJ} \quad \Delta \mathrm{~S}^{\mathrm{o}}=(+141.9 \mathrm{~J} / \mathrm{K})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=+0.1419 \mathrm{~kJ} / \mathrm{K}$
$-\Delta \mathrm{G}^{\mathrm{o}}{ }_{1500 \mathrm{~K}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}=+191.6 \mathrm{~kJ}-(1500 \mathrm{~K})(0.1419 \mathrm{~kJ} / \mathrm{K})=-21.3 \mathrm{~kJ}$
$\Delta \mathrm{G}^{\mathrm{o}}{ }_{1500 \mathrm{~K}}=(-21.3 \mathrm{~kJ})\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)=-21,300 \mathrm{~J}$
$\Delta \mathrm{G}^{\mathrm{o}}{ }_{1500 \mathrm{~K}}<0 \quad$ So, the reaction is spontaneous at 1500 K .
$-\mathrm{K}_{1500 \mathrm{~K}}=\exp \left[\frac{-\Delta \mathrm{G}_{1273 \mathrm{~K}}^{\mathrm{o}}}{\mathrm{RT}}\right]=\exp \left[\frac{-(-21,300 \mathrm{~J})}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K}} \times 1500 \mathrm{~K}\right)}\right]=\exp [+1.708]=5.5$
$\mathrm{K}_{1500 \mathrm{~K}}>1 \quad$ This also indicates that the reaction is spontaneous at 1500 K .

- The equilibrium constant expression includes only the CO_{2} gas and not the solids.
$\mathrm{K}_{1500 \mathrm{~K}}=\mathrm{P}_{\mathrm{CO} 2}=5.5 \mathrm{~atm}$
- Also, since $\Delta \mathrm{H}^{0}>0$ and $\Delta \mathrm{S}^{0}>0, \Delta \mathrm{G}_{\mathrm{T}}{ }^{0}$ is negative only at high temperatures.
$\Delta \mathrm{G}_{\mathrm{T}}{ }^{\mathrm{o}}<0$ at $\mathrm{T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$ because $\Delta \mathrm{G}_{\mathrm{T}}{ }^{0}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}$
$\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{(+191.6 \mathrm{~kJ})}{\left(0.1419 \frac{\mathrm{~kJ}}{\mathrm{~K}}\right)}=1350 \mathrm{~K}$
Reaction is spontaneous $\left(\Delta \mathrm{G}_{\mathrm{T}}{ }^{\mathrm{o}}<0\right)$ only at $\mathrm{T}>1350 \mathrm{~K}$.

